Exercises from Kaplansky's book.

Sec 4.2: 1, 2, 7 Sec 4.3: 3

Definition. For a linear order (A, <), call a subset $B \subseteq A$ dense if, for every pair a_1, a_2 in A with $a_1 < a_2$, there is $b \in B$ with $a_1 < b < a_2$.

Below, when \mathbb{R} and $2^{\mathbb{N}}$ are used as metric spaces, they are assumed to be equipped with their usual metrics, unless stated otherwise.

- 1. Show that
 - (a) \mathbb{Q} is dense in $(\mathbb{Q}, <)$.
 - (b) \mathbb{Q} is dense in $(\mathbb{R}, <)$.

HINT: One last time, reals are Dedekind cuts.

(c) $\mathbb{R} \setminus \mathbb{Q}$ is dense in $(\mathbb{R}, <)$.

HINT: $q + \sqrt{2}$ is irrational for any $q \in \mathbb{Q}$.

- (d) Neither \mathbb{Q} nor $\mathbb{R} \setminus \mathbb{Q}$ is open in \mathbb{R} , and hence neither is closed.
- **2.** Let (X, d) be a metric space and $A \subseteq X$. Prove:
 - (a) For an open set $U, U \cap A = \emptyset \implies U \cap \overline{A} = \emptyset$.
 - (b) The boundary ∂A is a closed set.
- **3.** For each of the following, determine the boundary and closure of the set A in the metric space (X, d). Prove your answers.
 - (a) $X := \mathbb{R}, A := \{q \in \mathbb{Q} : q < 0 \text{ or } q^2 \le 2\}.$
 - (b) $X := \mathbb{R}, A := \left\{\frac{1}{n} : n \in \mathbb{N} \setminus \{0\}\right\}.$
 - (c) $X := (0,1) \cup [2,3], A := (0,1) \cup \{2\}.$
 - (d) $X := (0,1) \cup [2,3], A := (2,3).$
 - (e) $X := 2^{\mathbb{N}}, A :=$ the set of eventually 0 sequences, i.e. $A := \{x \in 2^{\mathbb{N}} : \forall^{\infty} n \in \mathbb{N} \ x(n) = 0\}.$